Physical and Mechanical Properties of Glulam from Sengon and Red Meranti Wood

Zikri Hamidi

Abstract


The high production of sawn timber has increased the demand for wood each year. This has created an imbalance between the growing demand for wood and the declining supply of wood from natural forests. To address this issue, innovations in wood engineering are necessary to meet future wood demand. One solution is to utilize wood to produce Glued Laminated Timber (glulam). This research uses sengon and red meranti wood, forming three models: Model A, Model B, and Model C, with sizes of 120 x 5 x 1 cm and 120 x 3 x 1 cm. The objective of this study on glulam from sengon and red meranti wood is to determine the characteristics of its physical and mechanical properties. The highest density for physical properties is produced by Model B glulam, which is 0.579 g/cm³, the highest moisture content is produced by Model C glulam, which is 14.43%, delamination in cold water ranges from 12.08% to 32.08%, and in boiling water ranges from 22.25% to 44.63%. The highest MOE and MOR tests are shown by Model B and Model A. The results obtained for the MOE of Model B are 10,960.194 MPa and the MOR of Model A is 74.677 MPa.

Key words: Glulam, Red Meranti Wood, Sengon Wood

Full Text:

PDF

References


Abed J, Rayburg S, Rodwell J, Neave M. 2022. A Review of the Performance and Benefits of Mass Timber as an Alternative to Concrete and Steel for Improving the Sustainability of Structures. Sustain. 14(9). doi: 10.3390/su14095570.

Aminah Setyawati D, Yani A. 2018. Sifat fisik dan mekanik papan partikel dari limbah kayu Acacia crassicarpa pada beberapa ukuran partikel dan konsentrasi urea formaldehida. Jurnal Hutan Lestari. 6(3): 557-568.

Badan Pusat Statistik (BPS). 2022. Produksi Kayu Hutan. Badan Pusat Statistik. Produksi Kayu Hutan - Tabel Statistik - Badan Pusat Statistik Indonesia (bps.go.id)

Bowyer JL, Shmulsky R, Haygreen JG. 2003. Forest Products and Wood Science: An Introduction Fourth Edition. Ames: IOWA State University Press.

Brown HP, Panshin AJ, Forsaith CC. 1952. Text Book of Wood Technology Volume II. New York: Mc Graw-Hill Book Company.

Cahyono TD, Ohorella S, Febrianto F, Priadi T, Wahyudi I. 2014. Sifat fisis dan mekanis glulam dari kayu samama. Jurnal Ilmu Teknologi Kayu Tropis. 12(2):186-195.

Dayadi I. 2024. The shear bond and bending strength of laminated wood from pine wood (Pinus merkusii Jungh et de Vr.,) and sengon wood (Paraserianthes falcataria (L) Nielsen) glued with melamine urea formaldehyde (muf). Perennial. 20(1):1–10.

Darwis A, Massijaya MY, Nugroho N, Alamsyah EM, Nurrochmat DR. 2014. Bond ability of oil palm xylem with isocyanate adhesive. J. Ilmu Teknol. Kayu Tropis. 12(1): 39-47.

Dina S, Nurhaida N, Susilawati S. 2022. Pengaruh ukuran partikel dan kadar perekat urea formaldehida terhadap sifat fisik dan mekanik papan partikel ampas tebu. Jurnal Hutan Lestari. 10(1): 139-145.

Ghozali M, Haryono A, Saputra AH, Triwulandari E. 2015. Pengaruh 1,4-Butandiol Sebagai Poliol Pada Modifikasi Epoksi Menggunakan Poliuretan. J. Kim. Terap. Indones. 17(1):1-7. doi:10.14203/jkti.v17i1.17.

Hadi YS, Sri A, Diza R. Tanaman untuk glulam (A Review of The Utilization of Wood from Plantation Forest for Glulam). doi: 10.20886/jphh.2022.40.1.31.

Herawati E. 2007. Karakteristik balok laminasi dari kayu cepat tumbuh berdiameter kecil [tesis]. Bogor: Institut Pertanian Bogor.

[JAS] Japanese Agricultural Standard. 2003. Glued Laminated Timber. JAS 234: 2003. Tokyo (JP): Ministry of Agriculture, Forestry, and Fisheries.

Murtopo A, Jannah RM, Sabilla S, Tsaniyah L. 2020. Failure Analysis of Glulam Lumber Beam Made from Meranti Lumber Pieces (Shorea SP). J. Tek. Sipil dan Perenc. 22(2): 137–145. doi: 10.15294/jtsp.v22i2.26231.

Moody RC, Hernandez R, Liu JY. 1999. Glued Structural Members. Di dalam: Wood Handbook, Wood as an Engineering Material. Madison, WI: USDA Forest Service, Forest Products Laboratory.

Ningrum MH, Yuniawati. 2023. Optimalisasi Produksi Kayu Hutan Alam Melalui Dua Teknik Penebangan. J. Penelit. Has. Hutan. 41(1):11–26.doi:10.55981/jphh.2023.677.

Sulistyawati I, Nugoho N, Suryokusumo S, Hadi YS. 2008. Kekakuan dan kekuatan lentur maksimum balok glulam dan utuh kayu akasia. Jurnal Teknik Sipil ITB. 15(3):113-122.

Somadona S, Sribudiani E, Elsa Valencia D. 2020. Karakteristik Balok Laminasi Kayu Akasia (Acacia Mangium) dan Meranti Merah (Shorea leprosula) Berdasarkan Susunan Lamina DAN BERAT LABUR PEREKAT STYROFOAM. Wahana For. J. Kehutan. 15(2):53–64. doi: 10.31849/forestra.v15i2.5039.

Tsoumis G. 1991. Science And Technology of Wood Structure, Properties, Utilization. New York: Van Nostrand Reinhold.

Widiati KY. 2018. Karakteristik sifat fisika dan mekanika kayu lamina kombinasi jenis kayu sengon (Paraserianthes falcataria (l.) nilsen) dan jenis kayu merbau (Intsia spp.). J. Hutan Trop. 2(2):93–97. doi:10.32522/ujht.v2i2.1640.

Wulandari FT, Amin R. 2022. Sifat fisika dan mekanika papan laminasi kayu sengon (physical and mechanical properties of laminate boards sengon wood). J. Hutan Trop. 17(1):40–50.




DOI: http://dx.doi.org/10.31258/jiik.8.2.70-76

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 JURNAL ILMU-ILMU KEHUTANAN

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.