Konservasi tanah hutan pada implementasi praktik perhutanan sosial di Sumbermanjing, Malang Selatan
Conservation of forest land in the implementation of social forestry practices in Sumbermanjing, South Malang
DOI:
https://doi.org/10.31258/jiik.9.1.25-31Keywords:
bulk density, social forestry, pearson correlation, MalangAbstract
Konservasi tanah telah diatur dalam undang-undang. Implementasi pada lahan di Indonesia perlu dikontrol untuk mengurangi lahan kritis. Perhutanan sosial yang menjadi peluang pemanfaatan lahan oleh masyarakat. Selain itu, perhutanan sosial terfokus pada kebijakan dan konflik namun pembahasan terkait konservasi dan kesehatan tanah yang membutuh evaluasi untuk langkah perbaikan kesuburan tanah. Penelitian ini bertujuan untuk informasi kebutuhan perbaikan sifat fisik dan kimia tanah, selain itu untuk melihat korelasi kondisi berbagai variabel terhadap bulk density tanah perhutanan sosial. Pengambilan sampel tanah yang dikoleksi adalah 10 plot. Sampel tanah terdiri dari 5 plot di lokasi Perhutanan Sosial. Penggunaan petak ukur adalah 5 m x 5 m dengan jalur transek secara purposive sampling di hutan yang menereapkan perhutanan sosial. Posisi petak pertama dengan metode random sampling dan dilanjutkan pada petak kedua dengan jarak 100 m hingga petak terakhir. Sampel tanah yang diuji meliputi sifat fisik dan kimia tanah. Analisis data menggunakan uji independent sample t test dan uji korelasi pearson. Hasil menunjukkan pada lokasi penelitian memiliki kategori yang perlu dilakukan perbaikan pada sifat fisik dan kimia tanah. Sedangkan untuk uji korelasi, terdapat hubungan negatif pada prositas tanah dengan bulk density.
References
Badan Pusat Statistik Indonesia. (2018). Luas dan Penyebaran Lahan Kritis Menurut Provinsi (Hektar), 2013-2018. Online at https://www.bps.go.id/indicator/60/588/1/luas-dan-penyebaran-lahan-kritis-menurut-provinsi.html. Accessed 26 Februari 2025.
Kjeldahl J (1883). New method for the determination of nitrogen. Chem News. 48(1240):101–2
Agbede, T. M., & Oyewumi, A. (2022). Benefits of biochar, poultry manure and biochar-poultry manure for improvement of soil properties and sweet potato productivity in degraded tropical agricultural soils. Resources, Environment and Sustainability, 7(2022) 1-9, 100051. https://doi.org/10.1016/j.resenv.2022.10005.
Arshad, M. A. C., Lowery, B., & Grossman, B. (2015). Physical tests for monitoring soil quality. Methods for Assessing Soil Quality, 49 (1997) 123–141. https://doi.org/10.2136/sssaspecpub49.c7.
Arunrat, N., Sereenonchai, S., & Hatano, R. (2021). Impact of burning on soil organic carbon of maize-upland rice system in Mae Chaem Basin of Northern Thailand. Geoderma, 392(2021) 1-11, 115002. https://doi.org/10.1016/j.geoderma.2021.115002.
ASTM International, D. (2010). Standard Test Method for Density of Soil in Place by the Drive-Cylinder Method 1 (pp. 1–7). https://doi.org/10.1520/D2937-10.
Bhattacharya, P., Maity, P. P., Mowrer, J., Maity, A., Ray, M., Das, S., Chakrabarti, B., Ghosh, T., & Krishnan, P. (2020). Assessment of soil health parameters and application of the sustainability index to fields under conservation agriculture for 3, 6, and 9 years in India. Heliyon, 6(12) 1-10, e05640. https://doi.org/10.1016/j.heliyon.2020.e05640.
Cheng, Y., Li, P., Xu, G., Li, Z., Wang, T., Cheng, S., Zhang, H., & Ma, T. (2018). Catena The e ff ect of soil water content and erodibility on losses of available nitrogen and phosphorus in simulated freeze-thaw conditions. Catena, 166(2018), 21–33. https://doi.org/10.1016/j.catena.2018.03.015
Cotler, H., Cram, S., Martinez-Trinidad, S., & Quintanar, E. (2013). Forest soil conservation in central Mexico: An interdisciplinary assessment. Catena, 104 (2013), 280–287. https://doi.org/10.1016/j.catena.2012.12.005
Delac, D., Kisic, I., Bogunovic, I., & Pereira, P. (2021). Temporal impacts of pile burning on vegetation regrowth and soil properties in a Mediterranean environment ( Croatia ). 799(2021) 1-11. https://doi.org/10.1016/j.scitotenv.2021.149318.
Frau, L. J., Libohova, Z., Joost, S., Levasseur, C., Jeangros, B., Bragazza, L., & Sinaj, S. (2020). Geoderma Regional Regional investigation of spatial-temporal variability of soil magnesium - a case study from Switzerland. 21 (2020) 1-11. https://doi.org/10.1016/j.geodrs.2020.e00278.
Geng, G., Cakmak, I., Ren, T., Lu, Z., & Lu, J. (2021). Effect of magnesium fertilization on seed yield, seed quality, carbon assimilation and nutrient uptake of rapeseed plants. Field Crops Research, 264(2021), 1-10. 108082. https://doi.org/10.1016/j.fcr.2021.108082.
Gu, J., Li, Z., Mao, Y., Struik, P. C., Zhang, H., Liu, L., Wang, Z., & Yang, J. (2018). Roles of nitrogen and cytokinin signals in root and shoot communications in maximizing of plant productivity and their agronomic applications. Plant Science, 274(1018), 320–331. https://doi.org/10.1016/j.plantsci.2018.06.010.
Kim, C. G., Shin, K., Joo, K. Y., Lee, K. S., Shin, S. S., & Choung, Y. (2008). Effects of soil conservation measures in a partially vegetated area after forest fires. Science of the Total Environment, 399(1–3), 158–164. https://doi.org/10.1016/j.scitotenv.2008.03.034
Kishchuk, B., Lorente, M., & Johnston, M. (2019). Environmental policy and forest soil conservation: Canada’s experience to date. In Global Change and Forest Soils (pp. 455–472). https://doi.org/10.1016/B978-0-444-63998-1.00018-5
Liu, H., Liu, Y., Wang, K., & Zhao, W. (2020). Soil conservation efficiency assessment based on land use scenarios in the Nile River Basin. Ecological Indicators, 119 (2020) 1-12, 106864. https://doi.org/10.1016/j.ecolind.2020.106864
Maryudi, A., Devkota, R. R., Schusser, C., Yufanyi, C., Salla, M., Aurenhammer, H., Rotchanaphatharawit, R., & Krott, M. (2012). Back to basics: Considerations in evaluating the outcomes of community forestry. Forest Policy and Economics, 14(1), 1–5. https://doi.org/10.1016/j.forpol.2011.07.017
Melo, V. F., Barros, L. S., Silva, M. C. S., Veloso, T. G. R., Senwo, Z. N., Matos, K. S., & Nunes, T. K. O. (2021). Soil bacterial diversities and response to deforestation, land use and burning in North Amazon, Brazil. Applied Soil Ecology, 158(2020) 1-9, 103775. https://doi.org/10.1016/j.apsoil.2020.103775
Peraturan Menteri Lingkungan Hidup dan Kehutanan Republik Indonesia Nomor 9 Tahun 2021 Tentang Pengelolaan Perhutanan Sosial, Angewandte Chemie International Edition, 6(11), 951–952. 1 (2021).
Miller, D. C., Mansourian, S., Gabay, M., Hajjar, R., Jagger, P., Kamoto, J. F. M., Newton, P., Oldekop, J. A., Razafindratsima, O. H., Shyamsundar, P., Sunderland, T., & Wildburger, C. (2021). Forests, trees and poverty alleviation: Policy implications of current knowledge. Forest Policy and Economics, 131(2021) 1-7. https://doi.org/10.1016/j.forpol.2021.102566
Nyirenda, H., & Balaka, V. (2021). Conservation agriculture-related practices contribute to maize (Zea mays L.) yield and soil improvement in Central Malawi. Heliyon, 7(3) 1-8, e06636. https://doi.org/10.1016/j.heliyon.2021.e06636
Osman, K. T. (2012). Soil : principles, properties and management.
Rakatama, A., & Pandit, R. (2020). Reviewing social forestry schemes in Indonesia: Opportunities and challenges. Forest Policy and Economics, 111(1) 1-13, 102052. https://doi.org/10.1016/j.forpol.2019.102052
Undang-Undang Republik Indonesia Nomor 37 Tahun 2014 Tentang Konservasi Tanah dan Air, (2014).
Sahide, M. A. K., Fisher, M. R., Erbaugh, J. T., Intarini, D., Dharmiasih, W., Makmur, M., Faturachmat, F., Verheijen, B., & Maryudi, A. (2020). The boom of social forestry policy and the bust of social forests in Indonesia: Developing and applying an access-exclusion framework to assess policy outcomes. Forest Policy and Economics, 120(2020) 1-18, 102290. https://doi.org/10.1016/j.forpol.2020.102290
Sahide, M. A. K., Fisher, M. R., Supratman, S., Yusran, Y., Pratama, A. A., Maryudi, A., Runtubei, Y., Sabar, A., Verheijen, B., Wong, G. Y., & Kim, Y. S. (2020). Prophets and profits in Indonesia’s social forestry partnership schemes: Introducing a sequential power analysis. Forest Policy and Economics, 115(2020) 1-11, 102160. https://doi.org/10.1016/j.forpol.2020.102160
Sofiyuddin, M., Suyanto, S., Kadir, S., & Dewi, S. (2021). Sustainable land preparation for farmer-managed lowland agriculture in Indonesia. Forest Policy and Economics, 130(2021) 1-11, 102534. https://doi.org/10.1016/j.forpol.2021.102534
Sokolowski, A. C., Prack McCormick, B., De Grazia, J., Wolski, J. E., Rodríguez, H. A., Rodríguez-Frers, E. P., Gagey, M. C., Debelis, S. P., Paladino, I. R., & Barrios, M. B. (2020). Tillage and no-tillage effects on physical and chemical properties of an Argiaquoll soil under long-term crop rotation in Buenos Aires, Argentina. International Soil and Water Conservation Research, 8(2), 185–194. https://doi.org/10.1016/j.iswcr.2020.02.002
van Noordwijk, M. (2020). Prophets, Profits, Prove It: Social Forestry under Pressure. One Earth, 2(5), 394–397. https://doi.org/10.1016/j.oneear.2020.05.008
Walkley, A., & Black, I. A. (1933). An examination of Degraff method for determining soil organic matter and a proposed modification of the chromic acid titration method.
Yousaf, M., Bashir, S., Raza, H., Shah, A. N., Iqbal, J., Arif, M., Bukhari, M. A., Muhammad, S., Hashim, S., Alkahtani, J., Alwahibi, M. S., & Hu, C. (2021). Role of nitrogen and magnesium for growth, yield and nutritional quality of radish. Saudi Journal of Biological Sciences, 28(5), 3021–3030. https://doi.org/10.1016/j.sjbs.2021.02.043
Zhang, M., Liu, Y., Wei, Q., & Gou, J. (2021). Biochar enhances the retention capacity of nitrogen fertilizer and affects the diversity of nitrifying functional microbial communities in karst soil of southwest China. Ecotoxicology and Environmental Safety, 226 (2021), 112819. https://doi.org/10.1016/j.ecoenv.2021.112819